\( ( T_x,\ T_y ) \) の \( \Omega \Delta t \) 回転が \[ ( T_x,\ T_y ) \left( \begin{array}{cc} cos(\Omega \Delta t) & sin(\Omega \Delta t) \\ - sin(\Omega \Delta t) & cos(\Omega \Delta t) \\ \end{array} \right) \\ = ( T_x\ cos(\Omega \Delta t) - T_y sin(\Omega \Delta t),\\ \quad T_x\ sin(\Omega \Delta t) + T_y cos(\Omega \Delta t) ) \] であり,そして \[ T_x = 0, \\ T_y = - R\ sin( S_a ) \\ T_z = R\ cos( S_a ) \] なので, \[ T'_x = R\ sin( S_a ) sin(\Omega \Delta t) \\ T'_y = - R\ sin( S_a ) cos(\Omega \Delta t) \\ T'_z = R\ cos( S_a ) ) \] |