Up 等距離射影 作成: 2022-11-21
更新: 2022-11-24


    「等距離射影」は,つぎの条件で特徴づけられる:

    実際,図
    において,
      \[ \newcommand{\overarc}[1]{\stackrel{\Large\mbox{$\frown$}}{#1}} \overarc{P_1\ P_2} = \overarc{P_3\ P_4} \ \Longrightarrow\ \overline{P'_1\ P'_2} \ =\ \overline{P'_3\ P'_4} \ \]
    となる。


      証明:
        \[ \newcommand{\overarc}[1]{\stackrel{\Large\mbox{$\frown$}}{#1}} \overarc{T P_1} = k_1\ s ,\ \ \overarc{T P_2} = k_2\ s ,\ \ \overarc{T P_3} = k_3\ s ,\ \ \overarc{T P_4} = k_4\ s \]
      とすると,
        \[ \newcommand{\overarc}[1]{\stackrel{\Large\mbox{$\frown$}}{#1}} \overarc{P_1\ P_2} \ =\ \overarc{T P_2} - \overarc{T P_1} \ = k_2\ s - k_1\ s = ( k_2 - k_1 )\ s \]
      同様に
        \[ \newcommand{\overarc}[1]{\stackrel{\Large\mbox{$\frown$}}{#1}} \overarc{P_3\ P_4}\ = ( k_4 - k_3 )\ s \]
      よって,
        \[ k_2 - k_1 = k_4 - k_3 \]
      そして,
        \[ \overline{P'_1\ P'_2} \ =\ \overline{O P'_2} - \overline{O P'_1} \ = k_2\ r - k_1\ r \\ = ( k_2 - k_1 )\ r = ( k_4 - k_3 )\ r \\ = k_4\ r - k_3\ r =\ \overline{O P'_4} - \overline{O P'_3} \ =\ \overline{P'_3\ P'_4} \\ \]